JournalszaaVol. 16, No. 1pp. 113–117

Conformal Completion of U(n)\mathbb U(n)-invariant Ricci-Flat Kãhler Metrics at Infinity

  • Wolfgang Kühnel

    Universität Stuttgart, Germany
  • Hans-Bert Rademacher

    Universität Leipzig, Germany
Conformal Completion of $\mathbb U(n)$-invariant Ricci-Flat Kãhler Metrics at Infinity cover
Download PDF

Abstract

For every n2n≥2 we give an example of a complete U(n)\mathbb U(n)-invariant cohomogeneity one metric on R2n\mathbb R^{2n} which is not conformally flat and which carries twistor spinors with zeros. The construction uses a conformal completion at infinity of a U(n)\mathbb U(n)-invariant Ricci-flat Kähler metric on R2n\{0}\mathbb R^{2n} \backslash \lbrace 0 \rbrace given by Calabi [2] and by Freedman and Gibbons [4]. This extends our results in [6) for n=2n = 2 to all even dimensions.

Cite this article

Wolfgang Kühnel, Hans-Bert Rademacher, Conformal Completion of U(n)\mathbb U(n)-invariant Ricci-Flat Kãhler Metrics at Infinity. Z. Anal. Anwend. 16 (1997), no. 1, pp. 113–117

DOI 10.4171/ZAA/753