On the Dirichlet and the Riemann-Hilbert Problem on Möbius Strips
Karlheinz Schüffler
Heinrich-Heine-Universität, Düsseldorf, Germany
Abstract
In this paper we give 1) a description of harmonic functions on Möbius strips as a manifold modelled on a subspace of the (Sobolev) space of holomorphic functions on ring domains, 2) a functional-analytic theory for the Laplacian, e.g., the Dirichlet boundary value problem and 3) the Fredholm theory for the Riemann-Hubert operator.
Cite this article
Karlheinz Schüffler, On the Dirichlet and the Riemann-Hilbert Problem on Möbius Strips. Z. Anal. Anwend. 11 (1992), no. 2, pp. 221–227
DOI 10.4171/ZAA/611