Spectral Estimates for Compact Hyperbolic Space Forms and the Selberg Zeta Function for -Spectra. Part I
Reinhard Schuster
Universität Leipzig, Germany
![Spectral Estimates for Compact Hyperbolic Space Forms and the Selberg Zeta Function for $p$-Spectra. Part I cover](/_next/image?url=https%3A%2F%2Fcontent.ems.press%2Fassets%2Fpublic%2Fimages%2Fserial-issues%2Fcover-zaa-volume-11-issue-3.png&w=3840&q=90)
Abstract
We prove an asymptotic estimation for the length spectrum with certain weights for a compact hyperbolic space form. Thereby the Selberg trace formula and a Landau difference method is used.
Cite this article
Reinhard Schuster, Spectral Estimates for Compact Hyperbolic Space Forms and the Selberg Zeta Function for -Spectra. Part I. Z. Anal. Anwend. 11 (1992), no. 3, pp. 343–358
DOI 10.4171/ZAA/602