Translationshomogene statistische Lösungen dér Navier–Stokesschen Gleichungen in einem dreidimensionalen Kanalgebiet
Bernd Krause
Universität Leipzig, Germany
Abstract
Homogeneous space-time statistical solutions of the Navier-Stokes equations in a three-dimensional channel are studied which are based on given homogeneous initial measure. The individual solution of the Navier-Stokes equations is approximated by a periodical Galerkin-ansatz which satisfies the boundary conditions at the walls of the channel. Suitable a priori estimates and an approximation of the initial measure allow the limit process and ensure the existence of homogeneous statistical solutions of the Navier-Stokes equations by Prochorov’s theorem.
Cite this article
Bernd Krause, Translationshomogene statistische Lösungen dér Navier–Stokesschen Gleichungen in einem dreidimensionalen Kanalgebiet. Z. Anal. Anwend. 6 (1987), no. 3, pp. 257–279
DOI 10.4171/ZAA/248