# Approximation by Riesz Means of Hexagonal Fourier Series

### Ali Guven

Balikesir University, Turkey

## Abstract

Let $f$ be an $H$-periodic (periodic with respect to the hexagon lattice) Hölder continuous function of two real variables. The error $∥f−R_{n}(p_{k};f)∥$ is estimated in the uniform norm and in the Hölder norm, where $(p_{k})$ is a sequence of numbers such that $0<p_{0}≤p_{1}≤⋯$ and $R_{n}(p_{k};f)$ is the $n$th Riesz mean of hexagonal Fourier series of $f$ with respect to $(p_{k})$.

## Cite this article

Ali Guven, Approximation by Riesz Means of Hexagonal Fourier Series. Z. Anal. Anwend. 36 (2017), no. 1, pp. 1–16

DOI 10.4171/ZAA/1576