Uniform Asymptotic Expansions for the Fundamental Solution of Infinite Harmonic Chains

  • Alexander Mielke

    Weierstrass Institute für Angewandte Analysis und Stochastik and Humboldt-Universität, Berlin, Germany
  • Carsten Patz

    Weierstrass Institut für Angewandte Analysis und Stochastik, Berlin, Germany

Abstract

We study the dispersive behavior of waves in linear oscillator chains. We show that for general general dispersions it is possible to construct an expansion such that the remainder can be estimated by uniformly in space. In particlar we give precise asymptotics for the cross-over from the decay of nondegenerate wave numbers to the degenerate decay of degenerate wave numbers. This involves a careful description of the oscillatory integral involving the Airy function.

Cite this article

Alexander Mielke, Carsten Patz, Uniform Asymptotic Expansions for the Fundamental Solution of Infinite Harmonic Chains. Z. Anal. Anwend. 36 (2017), no. 4, pp. 437–475

DOI 10.4171/ZAA/1596