Concentration-Compactness Principle for Generalized Trudinger Inequalities

  • Robert Černý

    Charles University, Prague, Czech Republic
  • Petr Gurka

    Czech University of Life Sciences, Prague, Czech Republic
  • Stanislav Hencl

    Charles University, Prague, Czech Republic

Abstract

Let ΩRn\Omega\subset\mathbb R^n, n2n\geq 2, be a bounded domain and let α<n1\alpha < n-1. We prove the Concentration-Compactness Principle for the embedding of the Orlicz-Sobolev space W01LnlogαL(Ω)W^1_0L^n\log^{\alpha}L(\Omega) into the Orlicz space with the Young function exp(tnn1α)1\exp\big(t^{\frac{n}{n-1-\alpha}}\big)-1.

Cite this article

Robert Černý, Petr Gurka, Stanislav Hencl, Concentration-Compactness Principle for Generalized Trudinger Inequalities. Z. Anal. Anwend. 30 (2011), no. 3, pp. 355–375

DOI 10.4171/ZAA/1439