# Factorizations and Hardy–Rellich-type inequalities

### Fritz Gesztesy

Baylor University, Waco, USA### Lance Littlejohn

Baylor University, Waco, USA

A subscription is required to access this book chapter.

## Abstract

The principal aim of this note is to illustrate how factorizations of singular, even-order partial differential operators yield an elementary approach to classical inequalities of Hardy–Rellich-type. More precisely, introducing the two-parameter $n$-dimensional homogeneous scalar differential expressions $T_{\alpha,\beta} := - \Delta + \alpha |x|^{-2} x \cdot \nabla + \beta |x|^{-2}$, $\alpha, \beta \in \mathbb R$, $x \in \mathbb R^n \setminus \{0\}$, $n \in \mathbb N$, $n \geq 2$, and its formal adjoint, denoted by $T_{\alpha,\beta}^+$, we show that nonnegativity of $T_{\alpha,\beta}^+ T_{\alpha,\beta}$ on $C_0^{\infty}(\mathbb R^n \setminus \{0\})$ implies the fundamental inequality (*)

A particular choice of values for $\alpha$ and $\beta$ in (*) yields known Hardy–Rellich-type inequalities, including the classical Rellich inequality and an inequality due to Schmincke. By locality, these inequalities extend to the situation where $\mathbb R^n$ is replaced by an arbitrary open set $\Omega \subseteq \mathbb R^n$ for functions $f \in C^{\infty}_0(\Omega \setminus \{0\})$.

Perhaps more importantly, we will indicate that our method, in addition to being elementary, is quite flexible when it comes to a variety of generalized situations involving the inclusion of remainder terms and higher-order operators.