Dispersion estimates for spherical Schrödinger equations with critical angular momentum
Markus Holzleitner
Universität Wien, AustriaAleksey Kostenko
Universität Wien, AustriaGerald Teschl
Universität Wien, Austria and Erwin Schrödinger Institut, Wien, Austria
Download Chapter PDF
A subscription is required to access this book chapter.
Abstract
We derive a dispersion estimate for one-dimensional perturbed radial Schrödinger operators, where the angular momentum takes the critical value . We also derive several new estimates for solutions of the underlying differential equation and investigate the behavior of the Jost function near the edge of the continuous spectrum.