Dispersion estimates for spherical Schrödinger equations with critical angular momentum

  • Markus Holzleitner

    Universität Wien, Austria
  • Aleksey Kostenko

    Universität Wien, Austria
  • Gerald Teschl

    Universität Wien, Austria and Erwin Schrödinger Institut, Wien, Austria
Dispersion estimates for spherical Schrödinger equations with critical angular momentum cover
Download Chapter PDF

A subscription is required to access this book chapter.

Abstract

We derive a dispersion estimate for one-dimensional perturbed radial Schrödinger operators, where the angular momentum takes the critical value l=1/2l = –1/2. We also derive several new estimates for solutions of the underlying differential equation and investigate the behavior of the Jost function near the edge of the continuous spectrum.