Dispersion estimates for spherical Schrödinger equations with critical angular momentum
Markus Holzleitner
Universität Wien, AustriaAleksey Kostenko
Universität Wien, AustriaGerald Teschl
Universität Wien, Austria and Erwin Schrödinger Institut, Wien, Austria

A subscription is required to access this book chapter.
Abstract
We derive a dispersion estimate for one-dimensional perturbed radial Schrödinger operators, where the angular momentum takes the critical value . We also derive several new estimates for solutions of the underlying differential equation and investigate the behavior of the Jost function near the edge of the continuous spectrum.