Elements of Asymptotic Geometry

  • Sergei Buyalo

    Steklov Institute of Mathematics, St. Petersburg, Russia
  • Viktor Schroeder

    University of Zurich, Switzerland
Elements of Asymptotic Geometry cover

A subscription is required to access this book.

FrontmatterDownload pp. i–v
ContentsDownload pp. vii–ix
PrefaceDownload pp. xi–xii
1Hyperbolic geodesic spacespp. 1–8
2The boundary at infinitypp. 9–22
3Busemann functions on hyperbolic spacespp. 23–34
4Morphisms of hyperbolic spacespp. 35–47
5Quasi-Möbius and quasi-symmetric mapspp. 49–67
6Hyperbolic approximation of metric spacespp. 69–80
7Extension theoremspp. 81–96
8Embedding theoremspp. 97–105
9Basics of dimension theorypp. 107–128
10Asymptotic dimensionpp. 129–135
11Linearly controlled metric dimension: Basic propertiespp. 137–146
12Linearly controlled metric dimension: Applicationspp. 147–157
13Hyperbolic dimensionpp. 159–166
14Hyperbolic rank and subexponential corankpp. 167–179
Models of the hyperbolic space pp. 181–191
Bibliographypp. 193–196
Indexpp. 197–200