Handbook of Hilbert Geometry
Editors
Athanase Papadopoulos
Université de Strasbourg, FranceMarc Troyanov
École Polytechnique Fédérale de Lausanne, Switzerland

A subscription is required to access this book.
p. v ForewordAthanase PapadopoulosMarc Troyanov
pp. vii–viii Contentspp. 1–7 IntroductionAthanase PapadopoulosMarc Troyanov
pp. 11–32 Weak Minkowski spacesAthanase PapadopoulosMarc Troyanov
pp. 33–67 From Funk to Hilbert geometryAthanase PapadopoulosMarc Troyanov
pp. 69–110 Funk and Hilbert geometries from the Finslerian viewpointMarc Troyanov
pp. 111–125 On the Hilbert geometry of convex polytopesConstantin Vernicos
pp. 127–146 The horofunction boundary and isometry group of the Hilbert geometryCormac Walsh
pp. 147–158 Characterizations of hyperbolic geometry among Hilbert geometriesRen Guo
pp. 161–206 The geodesic flow of Finsler and Hilbert geometriesMickaël Crampon
pp. 207–261 Around groups in Hilbert geometryLudovic Marquis
pp. 263–273 Dynamics of Hilbert nonexpansive mapsAnders Karlsson
pp. 275–303 Birkhoff’s version of Hilbert’s metric and its applications in analysisBas LemmensRoger D. Nussbaum
pp. 307–338 Convex real projective structures and Hilbert metricsInkang KimAthanase Papadopoulos
pp. 339–352 Weil–Petersson Funk metric on Teichmüller spaceHideki MiyachiKen’ichi OhshikaSumio Yamada
pp. 353–379 Funk and Hilbert geometries in spaces of constant curvatureAthanase PapadopoulosSumio Yamada
pp. 383–389 On the origin of Hilbert geometryMarc Troyanov
pp. 391–431 Hilbert’s fourth problemAthanase Papadopoulos
pp. 433–442 Open problems