Handbook of Hilbert Geometry
Editors
Athanase Papadopoulos
Université de Strasbourg, FranceMarc Troyanov
École Polytechnique Fédérale de Lausanne, Switzerland
A subscription is required to access this book.
p. v ForewordAthanase PapadopoulosMarc Troyanov
pp. vii–viii Contentspp. 1–7 IntroductionAthanase PapadopoulosMarc Troyanov
pp. 11–32 Weak Minkowski spacesAthanase PapadopoulosMarc Troyanov
DOI 10.4171/147-1/1pp. 33–67 From Funk to Hilbert geometryAthanase PapadopoulosMarc Troyanov
DOI 10.4171/147-1/2pp. 69–110 Funk and Hilbert geometries from the Finslerian viewpointMarc Troyanov
DOI 10.4171/147-1/3pp. 111–125 On the Hilbert geometry of convex polytopesConstantin Vernicos
DOI 10.4171/147-1/4pp. 127–146 The horofunction boundary and isometry group of the Hilbert geometryCormac Walsh
DOI 10.4171/147-1/5pp. 147–158 Characterizations of hyperbolic geometry among Hilbert geometriesRen Guo
DOI 10.4171/147-1/6pp. 161–206 The geodesic flow of Finsler and Hilbert geometriesMickaël Crampon
DOI 10.4171/147-1/8pp. 207–261 Around groups in Hilbert geometryLudovic Marquis
DOI 10.4171/147-1/7pp. 263–273 Dynamics of Hilbert nonexpansive mapsAnders Karlsson
DOI 10.4171/147-1/9pp. 275–303 Birkhoff’s version of Hilbert’s metric and its applications in analysisBas LemmensRoger D. Nussbaum
DOI 10.4171/147-1/10pp. 307–338 Convex real projective structures and Hilbert metricsInkang KimAthanase Papadopoulos
DOI 10.4171/147-1/11pp. 339–352 Weil–Petersson Funk metric on Teichmüller spaceHideki MiyachiKen’ichi OhshikaSumio Yamada
DOI 10.4171/147-1/12pp. 353–379 Funk and Hilbert geometries in spaces of constant curvatureAthanase PapadopoulosSumio Yamada
DOI 10.4171/147-1/13pp. 383–389 On the origin of Hilbert geometryMarc Troyanov
DOI 10.4171/147-1/14pp. 391–431 Hilbert’s fourth problemAthanase Papadopoulos
DOI 10.4171/147-1/15pp. 433–442 DOI 10.4171/147-1/16Open problems