Free Loop Spaces in Geometry and Topology
Including the monograph Symplectic cohomology and Viterbo’s theorem by Mohammed Abouzaid
Editors
Janko Latschev
Universität Hamburg, GermanyAlexandru Oancea
Sorbonne Universités, Paris, France
A subscription is required to access this book.
pp. i–iv Frontmatterpp. v–vi Contentspp. 1–17 Introductionp. 19 Part I A panorama of topology, geometry and algebrapp. 21–65 Basics on free loop spacesDavid ChataurAlexandru Oancea
DOI 10.4171/153/1pp. 67–109 Morse theory, closed geodesics, and the homology of free loop spacesAlexandru Oancea
DOI 10.4171/153/2pp. 111–136 Rational homotopy – Sullivan modelsLuc Menichi
DOI 10.4171/153/3pp. 137–156 Free loop space and homologyJean-Louis Loday
DOI 10.4171/153/4pp. 157–163 Appendix to the chapter by J.-L. LodayJanko Latschev
DOI 10.4171/153/5pp. 165–222 On algebraic structures of the Hochschild complexHossein Abbaspour
DOI 10.4171/153/6pp. 223–242 Basic rational string topologyYves Félix
DOI 10.4171/153/7pp. 243–270 Fukaya’s work on Lagrangian embeddingsJanko Latschev
DOI 10.4171/153/8p. 271 Part II Symplectic cohomology and Viterbo’s theorempp. 273–274 Contentspp. 275–278 Introductionpp. 279–321 Symplectic cohomology of cotangent bundlesMohammed Abouzaid
DOI 10.4171/153/9pp. 323–354 Operations in symplectic cohomologyMohammed Abouzaid
DOI 10.4171/153/10pp. 355–376 String topology using piecewise geodesicsMohammed Abouzaid
DOI 10.4171/153/11pp. 377–404 From symplectic cohomology to loop homologyMohammed Abouzaid
DOI 10.4171/153/12pp. 405–453 Viterbo’s theorem: surjectivityMohammed Abouzaid
DOI 10.4171/153/13pp. 455–480 Viterbo’s theorem: isomorphismMohammed Abouzaid
DOI 10.4171/153/14pp. 481–485 Bibliography to Part IIpp. 487–488 List of contributorspp. 489–494 Index