Sophus Lie and Felix Klein: The Erlangen Program and Its Impact in Mathematics and Physics
Editors
Lizhen Ji
University of Michigan, Ann Arbor, USAAthanase Papadopoulos
Université de Strasbourg, France
A subscription is required to access this book.
p. v PrefaceLizhen JiAthanase Papadopoulos
pp. vii–viii Contentspp. xi–xviii IntroductionLizhen JiAthanase Papadopoulos
pp. 1–26 Sophus Lie, a giant in mathematicsLizhen Ji
DOI 10.4171/148-1/1pp. 27–58 Felix Klein: his life and mathematicsLizhen Ji
DOI 10.4171/148-1/2pp. 59–75 Klein and the Erlangen ProgrammeJeremy J. Gray
DOI 10.4171/148-1/3pp. 77–90 Klein’s “Erlanger Programm”: do traces of it exist in physical theories?Hubert Goenner
DOI 10.4171/148-1/4pp. 91–136 On Klein’s "So-called Non-Euclidean geometry"Norbert A’CampoAthanase Papadopoulos
DOI 10.4171/148-1/5pp. 137–190 What are symmetries of PDEs and what are PDEs themselves?Alexandre Vinogradov
DOI 10.4171/148-1/6pp. 191–216 Transformation groups in non-Riemannian geometryCharles Frances
DOI 10.4171/148-1/7pp. 217–235 Transitional geometryNorbert A’CampoAthanase Papadopoulos
DOI 10.4171/148-1/8pp. 237–245 On the projective geometry of constant curvature spacesAthanase PapadopoulosSumio Yamada
DOI 10.4171/148-1/9pp. 247–281 The Erlangen program and discrete differential geometryYuri B. Suris
DOI 10.4171/148-1/10pp. 283–306 Three-dimensional gravity – an application of Felix Klein’s ideas in physicsCatherine Meusburger
DOI 10.4171/148-1/11pp. 307–324 Invariances in physics and group theoryJean-Bernard Zuber
DOI 10.4171/148-1/12