Handbook of Teichmüller Theory, Volume I
Editors
Athanase Papadopoulos
IRMA, Strasbourg, France
A subscription is required to access this book.
pp. 1–30 Introduction to Teichmüller theory, old and newAthanase Papadopoulos
DOI 10.4171/029-1/1pp. 33–109 Harmonic maps and Teichmüller theoryGeorgios D. DaskalopoulosRichard A. Wentworth
DOI 10.4171/029-1/2pp. 111–204 On Teichmüller's metric and Thurston's asymmetric metric on Teichmüller spaceAthanase PapadopoulosGuillaume Théret
DOI 10.4171/029-1/3pp. 205–221 Surfaces, circles, and solenoidsRobert C. Penner
DOI 10.4171/029-1/4pp. 223–248 About the embedding of Teichmüller space in the space of geodesic Hölder distributionsJean-Pierre Otal
DOI 10.4171/029-1/5pp. 249–292 Teichmüller spaces, triangle groups and Grothendieck dessinsWilliam J. Harvey
DOI 10.4171/029-1/6pp. 293–349 On the boundary of Teichmüller disks in Teichmüller and in Schottky spaceFrank HerrlichGabriela Schmithüsen
DOI 10.4171/029-1/7pp. 353–386 Introduction to mapping class groups of surfaces and related groupsShigeyuki Morita
DOI 10.4171/029-1/8pp. 387–410 Geometric survey of subgroups of mapping class groupsJohn Loftin
DOI 10.4171/029-1/9pp. 411–446 Deformations of Kleinian groupsAlbert Marden
DOI 10.4171/029-1/10pp. 447–467 Geometry of the complex of curves and of Teichmüller spaceUrsula Hamenstädt
DOI 10.4171/029-1/11pp. 471–506 Parameters for generalized Teichmüller spacesCharalampos CharitosIoannis Papadoperakis
DOI 10.4171/029-1/12pp. 507–540 On the moduli space of singular euclidean surfacesMarc Troyanov
DOI 10.4171/029-1/13pp. 541–575 Discrete Riemann surfacesChristian Mercat
DOI 10.4171/029-1/14pp. 579–645 On quantizing Teichmüller and Thurston theoriesLeonid ChekhovRobert C. Penner
DOI 10.4171/029-1/15pp. 647–684 Dual Teichmüller and lamination spacesVladimir V. FockAlexander Goncharov
DOI 10.4171/029-1/16pp. 685–760 An analog of a modular functor from quantized Teichmüller theoryJörg Teschner
DOI 10.4171/029-1/17pp. 761–782 On quantum moduli space of flat PSL₂(ℝ)-connections on a punctured surfaceRinat Kashaev
DOI 10.4171/029-1/18