Handbook of Teichmüller Theory, Volume II
Editors
Athanase Papadopoulos
IRMA, Strasbourg, France

A subscription is required to access this book.
p. v ForewordAthanase Papadopoulos
pp. vii–iv Contentspp. 1–44 Introduction to Teichmüller theory, old and new, IIAthanase Papadopoulos
pp. 47–64 The Weil–Petersson metric geometryScott A. Wolpert
pp. 65–91 Infinite dimensional Teichmüller spacesAlastair FletcherVladimir Markovic
pp. 93–130 A construction of holomorphic families of Riemann surfaces over the punctured disk with given monodromyYoichi Imayoshi
pp. 131–149 The uniformization problemRobert Silhol
pp. 151–215 Riemann surfaces, ribbon graphs and combinatorial classesGabriele Mondello
pp. 217–237 Canonical 2-forms on the moduli space of Riemann surfacesNariya Kawazumi
pp. 242–269 Quasi-homomorphisms on mapping class groupsKoji Fujiwara
pp. 271–296 Lefschetz fibrations on 4-manifoldsMustafa KorkmazAndrás I. Stipsicz
pp. 297–367 Introduction to measurable rigidity of mapping class groupsYoshikata Kida
pp. 369–387 Affine groups of flat surfacesMartin Möller
pp. 389–451 Braid groups and Artin groupsLuis Paris
pp. 455–508 Complex projective structuresDavid Dumas
pp. 509–531 Circle packing and Teichmüller spaceSadayoshi Kojima
pp. 533–609 (2+1) Einstein spacetimes of finite typeRiccardo BenedettiFrancesco Bonsante
pp. 611–684 Trace coordinates on Fricke spaces of some simple hyperbolic surfacesWilliam M. Goldman
pp. 685–730 Spin networks and SL(2,ℂ)-character varietiesSean LawtonElisha Peterson
pp. 733–765 Grothendieck’s reconstruction principle and 2-dimensional topology and geometryFeng Luo
pp. 767–809 Dessins d’enfants and origami curvesFrank HerrlichGabriela Schmithüsen
pp. 811–858 The Teichmüller theory of the solenoidDragomir Šarić