Special geometry for arbitrary signatures
María A. Lledó
Universidad de Valencia, Burjassot (Valencia), SpainÓscar Maciá
Universidad de Valencia, Burjassot (Valencia), SpainAntoine Van Proeyen
Katholieke Universiteit Leuven, BelgiumVeeravalli S. Varadarajan
UCLA, Los Angeles, USA
A subscription is required to access this book chapter.
Abstract
In this paper we generalize special geometry to arbitrary signatures in target space. We formulate the definitions in a precise mathematical setting and give a translation to the coordinate formalism used in physics. For the projective case, we first discuss in detail projective Kähler manifolds, appearing in N = 1 supergravity. We develop a new point of view based on the intrinsic construction of the line bundle. The topological properties are then derived and the Levi-Civita connection in the projective manifold is obtained as a particular projection of a Levi-Civita connection in a ‘mother’ manifold with one extra complex dimension. The origin of this approach is in the superconformal formalism of physics, which is also explained in detail. Finally, we specialize these results to projective special Kähler manifolds and provide explicit examples with different choices of signature.