Rigged configurations and cylindric loop Schur functions
Thomas Lam
University of Michigan, Ann Arbor, USAPavlo Pylyavskyy
University of Minnesota, Minneapolis, USAReiho Sakamoto
Tokyo University of Science, Japan

Abstract
Rigged configurations are known to provide action-angle variables for remarkable discrete dynamical systems known as box-ball systems. We conjecture an explicit piecewise-linear formula to obtain the shapes of a rigged configuration from a tensor product of one-row crystals. We introduce cylindric loop Schur functions and show that they are invariants of the geometric -matrix. Our piecewise-linear formula is obtained as the tropicalization of ratios of cylindric loop Schur functions. We prove our conjecture for the first shape of a rigged configuration, thus giving a piecewise-linear formula for the lengths of the solitons of a box-ball system.
Cite this article
Thomas Lam, Pavlo Pylyavskyy, Reiho Sakamoto, Rigged configurations and cylindric loop Schur functions. Ann. Inst. Henri Poincaré Comb. Phys. Interact. 5 (2018), no. 4, pp. 513–555
DOI 10.4171/AIHPD/61