Random matrices and KK-theory for exact CC^*-algebras

  • U. Haagerup

  • S. Thorbjørnsen

Random matrices and $K$-theory for exact $C^*$-algebras cover
Download PDF

This article is published open access.

Abstract

In this paper we find asymptotic upper and lower bounds for the spectrum of random operators of the form SS=(i=1raiYi(n))(i=1raiYi(n)),S^*S=\Big(\sum_{i=1}^ra_i\otimes Y_i^{(n)}\Big)^* \Big(\sum_{i=1}^ra_i\otimes Y_i^{(n)}\Big), where a1,,ara_1,\ldots,a_r are elements of an exact CC^*-algebra and Y1(n),,Yr(n)Y_1^{(n)},\ldots,Y_r^{(n)} are complex Gaussian random n×nn\times n matrices, with independent entries. Our result can be considered as a generalization of results of Geman (1981) and Silverstein (1985) on the asymptotic behavior of the largest and smallest eigenvalue of a random matrix of Wishart type. The result is used to give new proofs of:

Cite this article

U. Haagerup, S. Thorbjørnsen, Random matrices and KK-theory for exact CC^*-algebras. Doc. Math. 4 (1999), pp. 341–450

DOI 10.4171/DM/63