Nodal domain theorems à la Courant
A. Ancona
Département de Mathématiques Département de Mathématiques Bat. 425 Bat. 425 Université Paris-Sud Université Paris-Sud 91 405 Orsay Cedex, France 91 405 Orsay Cedex, FranceB. Helffer
Département de Mathématiques Département de Mathématiques Bat. 425 Bat. 425 Université Paris-Sud Université Paris-Sud 91 405 Orsay Cedex, France 91 405 Orsay Cedex, FranceT. Hoffmann-Ostenhof
Institut für Theoretische Chemie Universität Wien Währinger Strasse 17 A-1090 Wien, Austria and International Erwin Schrödinger Institute for Mathematical Physics Boltzmanngasse 9, A-1090 Wien, Austria
Abstract
Let be a Schrödinger operator on a bounded domain with Dirichlet boundary condition. Suppose that are some pairwise disjoint subsets of and that are the corresponding Schrödinger operators again with Dirichlet boundary condition. We investigate the relations between the spectrum of and the spectra of the . In particular, we derive some inequalities for the associated spectral counting functions which can be interpreted as generalizations of Courant's nodal theorem. For the case where equality is achieved we prove converse results. In particular, we use potential theoretic methods to relate the to the nodal domains of some eigenfunction of .
Cite this article
A. Ancona, B. Helffer, T. Hoffmann-Ostenhof, Nodal domain theorems à la Courant. Doc. Math. 9 (2004), pp. 283–299
DOI 10.4171/DM/168