Almost proper GIT-stacks and discriminant avoidance
Jason Starr
4-108 Math Tower, Department of Mathematics, Stony Brook University, Stony Brook, NY 11794-3651, USAJohan de Jong
Department of Mathematics, Columbia University, New York, USA

Abstract
We prove that the classifying stack of an reductive group scheme over a field is very close to being proper. Using this we prove a result about isotrivial families of varieties. Fix a polarized variety with reductive automorphism group. To prove that every isotrivial family with this fibre has a rational section it suffices to prove this when the base is projective, i.e., the discriminant of the family is empty.
Cite this article
Jason Starr, Johan de Jong, Almost proper GIT-stacks and discriminant avoidance. Doc. Math. 15 (2010), pp. 957–972
DOI 10.4171/DM/319