A root space decomposition for finite vertex algebras
A. D'Andrea
Dip.to di Matematica Dip.to di Matematica Universit`a di Roma Universit`a di Roma "La Sapienza" "La Sapienza" Piazzale Aldo Moro, 5 Piazzale Aldo Moro, 5 00185 Rome, Italy 00185 Rome, ItalyG. Marchei
Dip.to di Matematica Dip.to di Matematica Universit`a di Roma Universit`a di Roma "La Sapienza" "La Sapienza" Piazzale Aldo Moro, 5 Piazzale Aldo Moro, 5 00185 Rome, Italy 00185 Rome, Italy
Abstract
Let be a Lie pseudoalgebra, . We show that, if generates a (finite) solvable subalgebra , then one may find a lifting of such that is nilpotent.
We then apply this result towards vertex algebras: we show that every finite vertex algebra admits a decomposition into a semi-direct product , where is a subalgebra of whose underlying Lie conformal algebra is a nilpotent self-normalizing subalgebra of , and is a canonically determined ideal contained in the nilradical .
Cite this article
A. D'Andrea, G. Marchei, A root space decomposition for finite vertex algebras. Doc. Math. 17 (2012), pp. 783–805
DOI 10.4171/DM/381