Asymptotics of spherical superfunctions on rank one Riemannian symmetric superspaces

  • Alexander Alldridge

    Universität zu Köln Universität zu Köln Mathematisches Institut Mathematisches Institut Weyertal 86-90 Weyertal 86-90 50931 Köln 50931 Köln Germany Germany
  • Wolfgang Palzer

    Universität zu Köln Universität zu Köln Mathematisches Institut Mathematisches Institut Weyertal 86-90 Weyertal 86-90 50931 Köln 50931 Köln Germany Germany
Asymptotics of spherical superfunctions on rank one Riemannian symmetric superspaces cover
Download PDF

This article is published open access.

Abstract

We compute the Harish-Chandra -function for a generic class of rank-one purely non-compact Riemannian symmetric superspaces in terms of Euler functions, proving that it is meromorphic. Compared to the even case, the poles of the -function are shifted into the right half-space. We derive the full asymptotic Harish-Chandra series expansion of the spherical superfunctions on . In the case where the multiplicity of the simple root is an even negative number, they have a closed expression as Jacobi polynomials for an unusual choice of parameters.

Cite this article

Alexander Alldridge, Wolfgang Palzer, Asymptotics of spherical superfunctions on rank one Riemannian symmetric superspaces. Doc. Math. 19 (2014), pp. 1317–1366

DOI 10.4171/DM/482