Concordance Invariance of Levine-Tristram Signatures of Links

  • Matthias Nagel

    Département de Mathématiques, Université du Québec à Montréal, Canada
  • Mark Powell

    Département de Mathématiques Université du Québec à Montréal, Canada
Concordance Invariance of Levine-Tristram Signatures of Links cover
Download PDF

This article is published open access.

Abstract

We determine for which complex numbers on the unit circle the Levine-Tristram signature and the nullity give rise to link concordance invariants.

Cite this article

Matthias Nagel, Mark Powell, Concordance Invariance of Levine-Tristram Signatures of Links. Doc. Math. 22 (2017), pp. 25–43

DOI 10.4171/DM/558