Iwasawa Theory and -Analytic Lubin-Tate -Modules
Laurent Berger
UMPA, ENS de Lyon UMR 5669 du CNRS, Université de Lyon, FranceLionel Fourquaux
IRMAR, UMR 6625 du CNRS, Université Rennes 1, France

Abstract
Let be a finite extension of . We use the theory of -modules in the Lubin-Tate setting to construct some corestriction-compatible families of classes in the cohomology of , for certain representations of . If in addition is crystalline, we describe these classes explicitly using Bloch-Kato's exponential maps. This allows us to generalize Perrin-Riou's period map to the Lubin-Tate setting.
Cite this article
Laurent Berger, Lionel Fourquaux, Iwasawa Theory and -Analytic Lubin-Tate -Modules. Doc. Math. 22 (2017), pp. 999–1030
DOI 10.4171/DM/585