The -Theory of Versal Flags and Cohomological Invariants of Degree 3
Sanghoon Baek
Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of KoreaRostislav Devyatov
Department of Mathematics and Statistics, University of Ottawa, 585 King Edward, Ottawa, ON K1N6N5, CanadaKirill Zainoulline
Department of Mathematics and Statistics, University of Ottawa, 585 King Edward, Ottawa, ON K1N6N5, Canada
Abstract
Let be a split semisimple linear algebraic group over a field and let be a generic twisted flag variety of . Extending the Hilbert basis techniques to Laurent polynomials over integers we give an explicit presentation of the Grothendieck ring in terms of generators and relations in the case is of Dynkin type A or C (here is the simply-connected cover of ); we compute various groups of (indecomposable, semi-decomposable) cohomological invariants of degree 3, hence, generalizing and extending previous results in this direction.
Cite this article
Sanghoon Baek, Rostislav Devyatov, Kirill Zainoulline, The -Theory of Versal Flags and Cohomological Invariants of Degree 3. Doc. Math. 22 (2017), pp. 1117–1148
DOI 10.4171/DM/589