The Motivic Cofiber of

  • Bogdan Gheorghe

    Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
The Motivic Cofiber of $\tau$ cover
Download PDF

This article is published open access.

Abstract

Consider the Tate twist in the mod 2 cohomology of the motivic sphere. After 2-completion, the motivic Adams spectral sequence realizes this element as a map , with cofiber . We show that this motivic 2-cell complex can be endowed with a unique ring structure. Moreover, this promotes the known isomorphism to an isomorphism of rings which also preserves higher products. We then consider the closed symmetric monoidal category of -modules (Mod, which lives in the kernel of Betti realization. Given a motivic spectrum , the -induced spectrum is usually better behaved and easier to understand than itself. We specifically illustrate this concept in the examples of the mod 2 Eilenberg-Maclane spectrum , the mod 2 Moore spectrum and the connective hermitian -theory spectrum .

Cite this article

Bogdan Gheorghe, The Motivic Cofiber of . Doc. Math. 23 (2018), pp. 1077–1127

DOI 10.4171/DM/642