Motivic Mahowald invariants over general base fields
J. D. Quigley
Department of Mathematics, Cornell University, Ithaca, NY, USA
Abstract
The motivic Mahowald invariant was introduced in [J. D. Quigley, Algebr. Geom. Topol. 19, No. 5, 2485–2534 (2019; Zbl 1436.55016)] and [J. D. Quigley, J. Topol. 14, No. 2, 369–418 (2021; Zbl 07381853)] to study periodicity in the - and -motivic stable stems. In this paper, we define the motivic Mahowald invariant over any field of characteristic not two and use it to study periodicity in the -motivic stable stems. In particular, we construct lifts of some of Adams' classical -periodic families [J. F. Adams, Topology 5, 21–71 (1966; Zbl 0145.19902)] and identify them as the motivic Mahowald invariants of powers of .
Cite this article
J. D. Quigley, Motivic Mahowald invariants over general base fields. Doc. Math. 26 (2021), pp. 561–582
DOI 10.4171/DM/822