Intermediate extensions and crystalline distribution algebras
Christine Huyghe
IRMA, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg cedex, FranceTobias Schmidt
IRMAR, Université de Rennes 1, Campus Beaulieu, 35042 Rennes cedex, France
Abstract
Let be a connected split reductive group over a complete discrete valuation ring of mixed characteristic. We use the theory of intermediate extensions due to Abe-Caro and arithmetic Beilinson-Bernstein localization to classify irreducible modules over the crystalline distribution algebra of in terms of overconvergent isocrystals on locally closed subspaces in the flag variety of . We treat the case of as an example.
Cite this article
Christine Huyghe, Tobias Schmidt, Intermediate extensions and crystalline distribution algebras. Doc. Math. 26 (2021), pp. 2005–2059
DOI 10.4171/DM/863