On the realization space of the cube
Karim Adiprasito
University of Copenhagen, Denmark; The Hebrew University of Jerusalem, IsraelDaniel Kalmanovich
Ariel University, IsraelEran Nevo
Hebrew University of Jerusalem, Israel
Abstract
We prove that the realization space of the -dimensional cube is contractible. For this we first show that any two realizations are connected by a finite sequence of projective transformations and normal transformations. As an application we use this fact to define an analog of the connected sum construction for cubical -polytopes, and apply this construction to certain cubical -polytopes to conclude that the rays spanned by -vectors of cubical -polytopes are dense in Adin’s cone. The connectivity result on cubes extends to any product of simplices, and further it shows that the respective realization spaces are contractible.
Cite this article
Karim Adiprasito, Daniel Kalmanovich, Eran Nevo, On the realization space of the cube. J. Eur. Math. Soc. 26 (2024), no. 1, pp. 261–273
DOI 10.4171/JEMS/1361