The Brauer group and the Brauer–Manin set of products of varieties

  • Alexei N. Skorobogatov

    Imperial College London, UK
  • Yuri G. Zarhin

    Pennsylvania State University, University Park, USA

Abstract

Let and be smooth and projective varieties over a field finitely generated over , and let $$ and be the varieties over an algebraic closure of obtained from and , respectively, by extension of the ground field. We show that the Galois invariant subgroup of has finite index in the Galois invariant subgroup of . This implies that the cokernel of the natural map is finite when is a number field. In this case we prove that the Brauer–Manin set of the product of varieties is the product of their Brauer–Manin sets.

A correction to this paper is available.

Cite this article

Alexei N. Skorobogatov, Yuri G. Zarhin, The Brauer group and the Brauer–Manin set of products of varieties. J. Eur. Math. Soc. 16 (2014), no. 4, pp. 749–769

DOI 10.4171/JEMS/445