On the semiclassical spectrum of the Dirichlet–Pauli operator
Jean-Marie Barbaroux
Université de Toulon, FranceLoic Le Treust
Université d'Aix-Marseille, FranceNicolas Raymond
Université d'Angers, FranceEdgardo Stockmeyer
Pontificia Universidad Católica de Chile, Santiago, Chile
Abstract
This paper is devoted to semiclassical estimates of the eigenvalues of the Pauli operator on a bounded open set with Dirichlet conditions on the boundary. Assuming that the magnetic field is positive and a few generic conditions, we establish the simplicity of the eigenvalues and provide accurate asymptotic estimates involving Segal–Bargmann and Hardy spaces associated with the magnetic field.
Cite this article
Jean-Marie Barbaroux, Loic Le Treust, Nicolas Raymond, Edgardo Stockmeyer, On the semiclassical spectrum of the Dirichlet–Pauli operator. J. Eur. Math. Soc. 23 (2021), no. 10, pp. 3279–3321
DOI 10.4171/JEMS/1085