JournalsjemsVol. 9 , No. 3DOI 10.4171/jems/89

Localization for Schrödinger operators with Poisson random potential

  • Abel Klein

    University of California, Irvine, United States
  • François Germinet

    Université de Cergy-Pontoise, France
  • Peter D. Hislop

    University of Kentucky, Lexington, United States
Localization for Schrödinger operators with Poisson random potential cover

Abstract

We prove exponential and dynamical localization for the Schrödinger operator with a nonnegative Poisson random potential at the bottom of the spectrum in any dimension. We also conclude that the eigenvalues in that spectral region of localization have finite multiplicity. We prove similar localization results in a prescribed energy interval at the bottom of the spectrum provided the density of the Poisson process is large enough.