Random Witten Laplacians: traces of semigroups, -Betti numbers and index
Sergio Albeverio
Universität Bonn, GermanyAlexei Daletskii
Nottingham Trent University, United KingdomAlexander Kalyuzhnyi
National Academy of Science of Ukraine, Kyiv, Ukraine
Abstract
Random Witten Laplacians on infinite coverings of compact manifolds are considered. The probabilistic representations of the corresponding heat kernels are given. The finiteness of the von Neumann traces of the corresponding semigroups is proved, and the short-time asymptotics of the corresponding super-trace is computed. Examples associated with Gibbs measures on configuration spaces and product manifolds are considered.
Cite this article
Sergio Albeverio, Alexei Daletskii, Alexander Kalyuzhnyi, Random Witten Laplacians: traces of semigroups, -Betti numbers and index. J. Eur. Math. Soc. 10 (2008), no. 3, pp. 571–599
DOI 10.4171/JEMS/123