Spaces of geometrically generic configurations

  • Yoel Feler

    Weizmann Institute of Science, Rehovot, Israel


Let denote either or . We study certain analytic properties of the space of ordered geometrically generic -point configurations in . This space consists of all such that no of the points belong to a hyperplane in . In particular, we show that for a big enough any holomorphic map commuting with the natural action of the symmetric group in is of the form , , where is an -invariant holomorphic map. A similar result holds true for mappings of the configuration space .

Cite this article

Yoel Feler, Spaces of geometrically generic configurations. J. Eur. Math. Soc. 10 (2008), no. 3, pp. 601–624

DOI 10.4171/JEMS/124