Nonexistence of Courant-type nodal domain bounds for eigenfunctions of the Dirichlet-to-Neumann operator
Alberto Enciso
Consejo Superior de Investigaciones Científicas, Madrid, SpainAngela Pistoia
Università degli Studi di Roma “La Sapienza”, ItalyLuigi Provenzano
Università degli Studi di Roma “La Sapienza”, Italy

Abstract
Given a compact manifold with boundary of dimension and any integers and , we show that there exists a metric on for which the first nonconstant eigenfunctions of the Dirichlet-to-Neumann map on have at least nodal components. This provides a negative answer to the question of whether the number of nodal domains of Dirichlet-to-Neumann eigenfunctions satisfies a Courant-type bound, which has been featured in recent surveys by Girouard and Polterovich (2017) and by Colbois, Girouard, Gordon and Sher (2024).
Cite this article
Alberto Enciso, Angela Pistoia, Luigi Provenzano, Nonexistence of Courant-type nodal domain bounds for eigenfunctions of the Dirichlet-to-Neumann operator. J. Eur. Math. Soc. (2025), published online first
DOI 10.4171/JEMS/1722