The classification of Nichols algebras over groups with finite root system of rank two
István Heckenberger
Universität Marburg, GermanyLeandro Vendramin
Universidad de Buenos Aires, Argentina
Abstract
We classify all groups and all pairs of absolutely simple Yetter–Drinfeld modules over such that the support of generates , , and the Nichols algebra of the direct sum of and admits a finite root system. As a byproduct, we determine the dimensions of such Nichols algebras, and several new families of finite-dimensional Nichols algebras are obtained. Our main tool is the Weyl groupoid of pairs of absolutely simple Yetter–Drinfeld modules over groups.
Cite this article
István Heckenberger, Leandro Vendramin, The classification of Nichols algebras over groups with finite root system of rank two. J. Eur. Math. Soc. 19 (2017), no. 7, pp. 1977–2017
DOI 10.4171/JEMS/711