Asymptotic completeness for superradiant Klein–Gordon equations and applications to the De Sitter–Kerr metric
Vladimir Georgescu
Université Cergy-Pontoise, FranceChristian Gérard
Université de Paris 11, Orsay, FranceDietrich Häfner
Université de Grenoble I, France
Abstract
We show asymptotic completeness for a class of superradiant Klein–Gordon equations. Our results are applied to the Klein–Gordon equation on the De Sitter–Kerr metric with small angular momentum of the black hole. For this equation we obtain asymptotic completeness for fixed angular momentum of the field.
Cite this article
Vladimir Georgescu, Christian Gérard, Dietrich Häfner, Asymptotic completeness for superradiant Klein–Gordon equations and applications to the De Sitter–Kerr metric. J. Eur. Math. Soc. 19 (2017), no. 8, pp. 2371–2444
DOI 10.4171/JEMS/720