Regularity lemma for distal structures
Artem Chernikov
University of California at Los Angeles, USASergei Starchenko
University of Notre Dame, USA
![Regularity lemma for distal structures cover](/_next/image?url=https%3A%2F%2Fcontent.ems.press%2Fassets%2Fpublic%2Fimages%2Fserial-issues%2Fcover-jems-volume-20-issue-10.png&w=3840&q=90)
Abstract
It is known that families of graphs with a semialgebraic edge relation of bounded complexity satisfy much stronger regularity properties than arbitrary graphs, and can be decomposed into very homogeneous semialgebraic pieces up to a small error (see e.g. [33, 2, 16, 18]). We show that similar results can be obtained for families of graphs with the edge relation uniformly definable in a structure satisfying a certain model-theoretic property called distality, with respect to a large class of generically stable measures. Moreover, distality characterizes these strong regularity properties. This applies in particular to graphs definable in arbitrary o-minimal structures and in -adics.
Cite this article
Artem Chernikov, Sergei Starchenko, Regularity lemma for distal structures. J. Eur. Math. Soc. 20 (2018), no. 10, pp. 2437–2466
DOI 10.4171/JEMS/816