Soliton dynamics for the 1D NLKG equation with symmetry and in the absence of internal modes
Michał Kowalczyk
Universidad de Chile, Santiago, ChileYvan Martel
Institut Polytechnique de Paris, Palaiseau, FranceClaudio Muñoz
Universidad del Chile, Santiago, Chile
Abstract
In this paper, we consider the dynamics of even solutions of the one-dimensional nonlinear Klein–Gordon equation for , in the vicinity of the unstable soliton . Our main result is that stability in the energy space implies asymptotics stability in a local energy norm. In particular, there exists a Lipschitz graph of initial data leading to stable and asymptotically stable trajectories. The condition corresponds to cases where the linearized operator around has no resonance and no internal mode. Recall that the case is treated by Krieger, Nakanishi and Schlag [Math. Z. 272 (2012)] using Strichartz and other local dispersive estimates. Since these tools are not available for low power nonlinearities, our approach is based on virial type estimates and the particular structure of the linearized operator observed by Chang, Gustafson, Nakanishi and Tsai [SIAM J. Math. Anal. 39 (2007/08)].
Cite this article
Michał Kowalczyk, Yvan Martel, Claudio Muñoz, Soliton dynamics for the 1D NLKG equation with symmetry and in the absence of internal modes. J. Eur. Math. Soc. 24 (2022), no. 6, pp. 2133–2167
DOI 10.4171/JEMS/1130