JournalsjemsVol. 24, No. 7pp. 2315–2359

On the hyperbolicity of base spaces for maximally variational families of smooth projective varieties (with an appendix by Dan Abramovich)

  • Ya Deng

    Université de Lorraine, Nancy, France
On the hyperbolicity of base spaces for maximally variational families of smooth projective varieties (with an appendix by Dan Abramovich) cover
Download PDF

This article is published open access under our Subscribe to Open model.

Abstract

For maximal variational smooth families of projective manifolds whose general fibers have semi-ample canonical bundle, the Viehweg hyperbolicity conjecture states that the base spaces of such families are of log-general type. This deep conjecture was recently proved by Campana– Păun and was later generalized by Popa–Schnell. In this paper we prove that those base spaces are pseudo Kobayashi hyperbolic, as predicted by the Lang conjecture: any complex quasi-projective manifold is pseudo Kobayashi hyperbolic if it is of log-general type. As a consequence, we prove the Brody hyperbolicity of moduli spaces of polarized manifolds with semi-ample canonical bundle. This proves a 2003 conjecture by Viehweg–Zuo.We also prove the Kobayashi hyperbolicity of base spaces for effectively parametrized families of minimal projective manifolds of general type. This generalizes previous work by To–Yeung, who further assumed that these families are canonically polarized.

Cite this article

Ya Deng, On the hyperbolicity of base spaces for maximally variational families of smooth projective varieties (with an appendix by Dan Abramovich). J. Eur. Math. Soc. 24 (2022), no. 7, pp. 2315–2359

DOI 10.4171/JEMS/1152