JournalsjemsVol. 24, No. 10pp. 3597–3628

C\mathbb{C}-motivic modular forms

  • Bogdan Gheorghe

    Max-Planck-Institut für Mathematik, Bonn, Germany
  • Daniel C. Isaksen

    Wayne State University, Detroit, USA
  • Achim Krause

    Westfälische Wilhelms-Universität Münster, Germany
  • Nicolas Ricka

    IRMA, Strasbourg, France
$\mathbb{C}$-motivic modular forms cover
Download PDF

This article is published open access under our Subscribe to Open model.

Abstract

We construct a topological model for cellular, 2-complete, stable C\mathbb{C}-motivic homotopy theory that uses no algebro-geometric foundations. We compute the Steenrod algebra in this context, and we construct a “motivic modular forms” spectrum over C\mathbb{C}.

Cite this article

Bogdan Gheorghe, Daniel C. Isaksen, Achim Krause, Nicolas Ricka, C\mathbb{C}-motivic modular forms. J. Eur. Math. Soc. 24 (2022), no. 10, pp. 3597–3628

DOI 10.4171/JEMS/1171