Growth in SL<sub>3</sub>(ℤ/<em>p</em>ℤ)
Harald Andrés Helfgott
Georg-August-Universität Göttingen, Germany
Abstract
Let G = SL3(ℤ/_p_ℤ), p a prime. Let A be a set of generators of G. Then A grows under the group operation.
To be precise: denote by |S| the number of elements of a finite set S. Assume |A| < |G|1-ε for some ε > 0. Then |A ∙ A ∙ A| > |A|1+δ, where δ > 0 depends only on ε.
Cite this article
Harald Andrés Helfgott, Growth in SL<sub>3</sub>(ℤ/<em>p</em>ℤ). J. Eur. Math. Soc. 13 (2011), no. 3, pp. 761–851
DOI 10.4171/JEMS/267