Right coideal subalgebras of Uq+(so2n+1)U_q^+(\frak{so}_{2n+1})

  • V. K. Kharchenko

    Universidad Nacional Autonoma de México, Cuautitlán Izcalli, Mexico

Abstract

We give a complete classification of right coideal subalgebras that contain all grouplike elements for the quantum group Uq+(so2n+1),U_q^+(\frak{so}_{2n+1}), provided that qq is not a root of 1. If qq has a finite multiplicative order t>4,t>4, this classification remains valid for homogeneous right coideal subalgebras of the small Lusztig quantum group uq+(so2n+1).u_q^+(\frak{ so}_{2n+1}). Consequently, we determine that the total number of right coideal subalgebras that contain the coradical equals (2n)!!,(2n)!!, the order of the Weyl group defined by the root system of type Bn.B_n.

Cite this article

V. K. Kharchenko, Right coideal subalgebras of Uq+(so2n+1)U_q^+(\frak{so}_{2n+1}). J. Eur. Math. Soc. 13 (2011), no. 6, pp. 1677–1735

DOI 10.4171/JEMS/291