Welschinger invariants of small non-toric Del Pezzo surfaces
Ilia Itenberg
Université de Strasbourg, FranceViatcheslav Kharlamov
Université de Strasbourg, FranceEugenii Shustin
Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv, Israel
Abstract
We give a recursive formula for purely real Welschinger invariants of the following real Del Pezzo surfaces: the projective plane blown up at real and pairs of conjugate imaginary points, where , and the real quadric blown up at pairs of conjugate imaginary points and having non-empty real part. The formula is similar to Vakil's recursive formula [22] for Gromov–Witten invariants of these surfaces and generalizes our recursive formula [12] for purely real Welschinger invariants of real toric Del Pezzo surfaces. As a consequence, we prove the positivity of the Welschinger invariants under consideration and their logarithmic asymptotic equivalence to genus zero Gromov–Witten invariants.
Cite this article
Ilia Itenberg, Viatcheslav Kharlamov, Eugenii Shustin, Welschinger invariants of small non-toric Del Pezzo surfaces. J. Eur. Math. Soc. 15 (2013), no. 2, pp. 539–594
DOI 10.4171/JEMS/367