Branching processes, and random-cluster measures on trees

  • Geoffrey R. Grimmett

    University of Cambridge, UK
  • Svante Janson

    Uppsala Universitet, Sweden


Random-cluster measures on infinite regular trees are studied in conjunction with a general type of `boundary condition', namely an equivalence relation on the set of infinite paths of the tree. The uniqueness and non-uniqueness of \rc\ measures are explored for certain classes of equivalence relations. In proving uniqueness, the following problem concerning branching processes is encountered and answered. Consider bond percolation on the family-tree TT of a branching process. What is the probability that every infinite path of TT, beginning at its root, contains some vertex which is itself the root of an infinite open sub-tree?

Cite this article

Geoffrey R. Grimmett, Svante Janson, Branching processes, and random-cluster measures on trees. J. Eur. Math. Soc. 7 (2005), no. 2, pp. 253–281

DOI 10.4171/JEMS/28