Strong nonlinear instability and growth of Sobolev norms near quasiperiodic finite gap tori for the 2D cubic NLS equation

  • Marcel Guardia

    Universitat Politècnica de Catalunya, Barcelona; Centre de Recerca Matemàtica, Barcelona, Spain
  • Zaher Hani

    University of Michigan, Ann Arbor, USA
  • Emanuele Haus

    Università di Roma Tre, Italy
  • Alberto Maspero

    International School for Advanced Studies (SISSA), Trieste, Italy
  • Michela Procesi

    Università di Roma Tre, Italy
Strong nonlinear instability and growth of Sobolev norms near quasiperiodic finite gap tori for the 2D cubic NLS equation cover
Download PDF

This article is published open access under our Subscribe to Open model.

Abstract

We consider the defocusing cubic nonlinear Schrödinger equation (NLS) on the twodimensional torus. The equation admits a special family of elliptic invariant quasiperiodic tori called finite gap solutions. These are inherited from the integrable 1D model (cubic NLS on the circle) by considering solutions that depend only on one variable. We study the long-time stability of such invariant tori for the 2D NLS model and show that, under certain assumptions and over sufficiently long time scales, they exhibit a strong form of transverse instability in Sobolev spaces . More precisely, we construct solutions of the 2D cubic NLS that start arbitrarily close to such invariant tori in the topology and whose norm can grow by any given factor. This work is partly motivated by the problem of infinite energy cascade for 2D NLS, and seems to be the first instance where (unstable) long-time nonlinear dynamics near (linearly stable) quasiperiodic tori is studied and constructed.

Cite this article

Marcel Guardia, Zaher Hani, Emanuele Haus, Alberto Maspero, Michela Procesi, Strong nonlinear instability and growth of Sobolev norms near quasiperiodic finite gap tori for the 2D cubic NLS equation. J. Eur. Math. Soc. 25 (2023), no. 4, pp. 1497–1551

DOI 10.4171/JEMS/1200