Galois self-dual cuspidal types and Asai local factors
U. K. Anandavardhanan
Indian Institute of Technology Bombay, Mumbai, IndiaR. Kurinczuk
Imperial College London, UKNadir Matringe
Université de Poitiers, FranceVincent Secherre
Université de Versailles, FranceShaun Stevens
University of East Anglia, Norwich, UK
Abstract
Let be a quadratic extension of non-archimedean locally compact fields of odd residual characteristic and be its non-trivial automorphism. We show that any -self-dual cuspidal representation of contains a -self-dual Bushnell–Kutzko type. Using such a type, we construct an explicit test vector for Flicker's local Asai L-function of a -distinguished cuspidal representation and compute the associated Asai root number. Finally, by using global methods, we compare this root number to Langlands–Shahidi's local Asai root number, and more generally we compare the corresponding epsilon factors for any cuspidal representation.
Cite this article
U. K. Anandavardhanan, R. Kurinczuk, Nadir Matringe, Vincent Secherre, Shaun Stevens, Galois self-dual cuspidal types and Asai local factors. J. Eur. Math. Soc. 23 (2021), no. 9, pp. 3129–3191
DOI 10.4171/JEMS/1080