Schrödinger operators with slowly decaying Wigner–von Neumann type potentials
Milivoje Lukic
Rice University, Houston, USA
Abstract
We consider Schrödinger operators with potentials satisfying a generalized bounded variation condition at infinity and an decay condition. This class of potentials includes slowly decaying Wigner–von Neumann type potentials with . We prove absence of singular continuous spectrum and show that embedded eigenvalues in the continuous spectrum can only take values from an explicit finite set. Conversely, we construct examples where such embedded eigenvalues are present, with exact asymptotics for the corresponding eigensolutions.
Cite this article
Milivoje Lukic, Schrödinger operators with slowly decaying Wigner–von Neumann type potentials. J. Spectr. Theory 3 (2013), no. 2, pp. 147–169
DOI 10.4171/JST/41