JournalsjstVol. 6, No. 1pp. 1–41

Universal measurability and the Hochschild class of the Chern character

  • Alan L. Carey

    The Australian National University, Canberra, Australia
  • Adam Rennie

    University of Wollongong, Australia
  • Fedor Sukochev

    University of New South Wales, Sydney, Australia
  • Dmitriy Zanin

    University of New South Wales, Sydney, Australia
Universal measurability and the Hochschild class of the Chern character cover
Download PDF

Abstract

We study notions of measurability for singular traces, and characterise universal measurability for operators in Dixmier ideals. This measurability result is then applied to improve on the various proofs of Connes’ identication of the Hochschild class of the Chern character of Dixmier summable spectral triples.

The measurability results show that the identication of the Hochschild class is independent of the choice of singular trace. As a corollary we obtain strong information on the asymptotics of the eigenvalues of operators naturally associated to spectral triples A,H,D\mathcal A, H, D and Hochschild cycles for A\mathcal A.

Cite this article

Alan L. Carey, Adam Rennie, Fedor Sukochev, Dmitriy Zanin, Universal measurability and the Hochschild class of the Chern character. J. Spectr. Theory 6 (2016), no. 1, pp. 1–41

DOI 10.4171/JST/116